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Diseases of tropical reef organisms is an intensive area of study, but despite significant
advances in methodology and the global knowledge base, identifying the proximate
causes of disease outbreaks remains difficult. The dynamics of infectious wildlife
diseases are known to be influenced by shifting interactions among the host, pathogen,
and other members of the microbiome, and a collective body of work clearly
demonstrates that this is also the case for the main foundation species on reefs, corals.
Yet, among wildlife, outbreaks of coral diseases stand out as being driven largely by
a changing environment. These outbreaks contributed not only to significant losses
of coral species but also to whole ecosystem regime shifts. Here we suggest that to
better decipher the disease dynamics of corals, we must integrate more holistic and
modern paradigms that consider multiple and variable interactions among the three
major players in epizootics: the host, its associated microbiome, and the environment.
In this perspective, we discuss how expanding the pathogen component of the classic
host-pathogen-environment disease triad to incorporate shifts in the microbiome leading
to dysbiosis provides a better model for understanding coral disease dynamics. We
outline and discuss issues arising when evaluating each component of this trio and
make suggestions for bridging gaps between them. We further suggest that to best
tackle these challenges, researchers must adjust standard paradigms, like the classic
one pathogen-one disease model, that, to date, have been ineffectual at uncovering
many of the emergent properties of coral reef disease dynamics. Lastly, we make
recommendations for ways forward in the fields of marine disease ecology and the
future of coral reef conservation and restoration given these observations.
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INTRODUCTION

Insights into disease mechanisms are being broadly reconsidered
(Byrd and Segre, 2016), and investigations into coral disease
highlight many of the issues in identifying single pathogens that
can reproduce the signs of a specific disease. Coral biologists have
cataloged outbreaks on reefs since the 1970s (Antonius, 1973;
Garrett and Ducklow, 1975; Mitchell and Chet, 1975; Dustan,
1977; Gladfelter et al., 1977; Gladfelter, 1982), and evidence
from paleontological and ecological monitoring suggest that the
number and geographic distribution of coral disease epizootics
increased in recent years (Richardson, 1998; Precht et al., 2002,
2016; Sutherland et al., 2004; Harvell et al., 2007; Tracy et al.,
2019). Global coral disease distributions are both diverse and
widespread across all ocean basins, indicating hotspots occur in
multiple geographic locations (Figure 1).

Yet despite extensive monitoring and exploration, only six
described coral diseases have a known pathogen that can
repeatedly initiate a consistent disease phenotype. To date, Koch’s
postulates was fulfilled for few coral diseases, although numerous
studies have also questioned these results (Table 1). Disease
outbreaks often appear in relatively pristine environments,
during mild seasons, and in ideal ecological states (e.g., low
host densities), altogether countering many theories in traditional
disease ecology and confounding pathogen identification. The
environmental variables (e.g., temperature, salinity, organic and
inorganic nutrient concentrations, benthic competitor density,
predator abundance) that influence coral disease outright are
numerous for sure, and those that are indirect are likely
incalculable. Thus, many controversies about the etiological
agents and ecological conditions responsible for coral diseases
likely result in: (1) our inability to distinguish coral phenotypes
or disease signs, (2) our incomplete understanding of the
interactive roles of host phylogeny, genotype, immunology
and physiology, (3) animal and reef-associated microbial and
viral community dynamics, (4) the contextual roles that a
highly variable environment play in coral disease susceptibility,
onset, progression and transmission and (5) the limitation on
reproducibility or comparability among studies. Although these
issues are not unique to coral disease (Egan and Gardiner, 2016;
Logan et al., 2016; Apprill, 2017; Levy et al., 2017), the rapidity
and severity of coral disease driven decline has brought these
issues to the forefront of coral biology research.

Therefore, after over 40 years of work, we argue here that by
adopting the assumptions from classic wildlife disease ecology,
our paradigms and viewpoints have been clearly insufficient
to understanding the dynamics of coral disease ecology—
particularly the one pathogen-one disease framework. Therefore,
to identify emergent properties of coral reef disease ecology, that
will help us preserve these ecosystems in the future, we must
adopt and adapt more holistic and modern paradigms that reflect
the complexities of our system, including interactions among the
three major players associated with most epizootics (Figure 2):
the host, its microbiome, and the environment. Below we present
a discussion of each component of the classic disease triad,
how adhering to traditional wildlife disease frameworks limits
current understanding of coral diseases, and why expanding our

approach to studying each component separately and collectively
provides a way forward.

PART I: THE HOST

The host animal is clearly a critical facet in the quest to decipher
disease dynamics in any system. However, the sessile, modular
nature of corals, and the complexity of their endosymbioses
with algae and bacteria introduce unique challenges not typically
considered in the development of disease ecology theory in
other animals. In addition, subtle but important variation in
the evolutionary history, genetics, physiology, and immunity
among coral species makes predicting the pathogen or groups
of pathogens underlying coral diseases elusive because not all
hosts are equally permissive to infections. Here, we describe
the main contributors to variability in coral hosts that have
hampered our ability to produce reliably validated hypotheses
about disease dynamics across the coral tree of life, yet we also
make recommendations for ways forward in this area of coral
biology research to help us in these endeavors.

Coral Disease Phenotypes and Disease
Classification
A major hurdle in the field of coral disease ecology is our
reliance on linking characteristic phenotypes of corals to explicit
disease signs. Weil et al. (2009) expressed this problem well when
asserting that descriptions of many coral diseases are limited
and often confounded by the lack of clear diagnostic criteria
with no pathological observations, so that similar disease signs
may emerge in multiple coral species (Weil, 2004; Work and
Aeby, 2006; Raymundo et al., 2008; Work et al., 2008). In other
words, ascribing a single pathogen to a disease sign indicative
of numerous conditions hampers our ability to monitor the
drivers of disease. For example, Couch et al. (2014) found that
diffuse subacute tissue loss was the most common phenotype
across all species suffering from distress. Similarly, Bourne
et al. (2015) highlighted that white syndromes are a collective
term for unexplained patterns of coral tissue loss of unknown
etiology in Indo-Pacific corals. These examples illustrate a
common challenge that arises because tissue loss is a general
and widespread clinical sign that may have multiple root causes.
Indeed, coral biologists acknowledge that corals may only have a
limited number of ways to express visual signs of disease. This has
led to a push for systematic, detailed species-specific descriptions
to facilitate sharing of disease information, especially when the
etiology remains unknown (Work and Aeby, 2006).

Coral Evolutionary History
The long evolutionary history of scleractinian corals has given
rise to variability in biological and ecological characteristics
both among and within coral species that are central to current
difficulties in identifying the etiology of coral diseases. Although
simple in design, scleractinian corals are a group of organisms
that have evolved over more than 400 million years, a timeline
equivalent to the evolution of land plants. Coral have diverged
into 21 distinct clades that represent potentially hundreds of
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FIGURE 1 | Recorded coral disease richness from surveys published between 1973 and 2020.

different species (Fukami, 2008; Huang, 2012; Huang and Roy,
2013, 2015). This relatively long evolutionary history and high
species diversity creates uncertainty in the ongoing efforts to
generalize how all coral hosts might respond to various pathogens
and environmental conditions.

Differences in disease susceptibility among species illustrates
the extent of host variability in corals, as entire coral families
experience higher rates and severity of disease than others
(Pinzon et al., 2014; Williams et al., 2020). Acroporids and
pocilloporids generally show elevated susceptibility to disease
(Willis et al., 2004), particularly diseases like white syndromes
that affect many coral species (Hobbs et al., 2015). Palmer et al.
(2010) attributed broad patterns of differential susceptibility
among coral families to differing levels of investment in immune
parameters in a meta-analysis of skeletal eroding band disease.
Pocilloporids were most susceptible, followed by acroporids and
finally poritids (Palmer et al., 2010). These kinds of patterns may
have a clear phylogenetic basis. For example, Pinzon et al. (2014)
demonstrated that species-specific and genus-specific disease
susceptibility in Caribbean corals was higher in modern taxa
and lower in corals from earlier lineages such as Porites and
Siderastrea that diverged more than 200 MYA.

TABLE 1 | Coral disease studies confirming Koch’s Postulates and work
refuting the findings.

Coral disease Paper confirming pathogen But see

White band type II Richie and Smith, 1998

White plague type II Richardson et al., 1998 Pantos et al., 2003;
Kellogg et al., 2013

Aspergillosis Nagelkerken et al., 1997; Geiser
et al., 1998; Smith et al., 1998

Toledo-Hernández
et al., 2008

Acroporid
serratiosis

Patterson et al., 2002;
Sutherland et al., 2011

Lesser and Jarett, 2014

Bacterial bleaching Kushmaro et al., 1997;
Ben-Haim et al., 2003b

White syndromes Sussman et al., 2008;
Pollock et al., 2017

Coral Species Genotypic Diversity
Even among coral species within the same genus, responses to
exposure to the same pathogen or environment can differ. The
important role that a coral’s genotype plays in its resistance and
resilience to thermal stress and bleaching has been recognized
for some time (Edmunds, 1994; Fitt et al., 2009). Bleached coral
colonies can directly neighbor colonies of the same species that
do not exhibit bleaching (Edmunds, 1994; Ritson-Williams and
Gates, 2020). Even less is known about genotypic variation in
disease resistance within coral species, but evidence is mounting
that it is important for disease dynamics (Muller et al., 2018).
Conceptually, coral genotypes should differ in the same ways

FIGURE 2 | Complex interactions within and among the coral host,
environment, and microbiome can lead to a disease state with many
connections still unknown.
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that coral species differ in four main ways: (1) the signs of
disease they display at a certain level of infection, (2) the way
they manifest damage, (3) their degree of resistance and (4)
degree of tolerance. As an example, genetic diversity among
species complicates disease diagnosis. White syndrome lesions
in different Porites species healed at different rates (Lozada-
Misa et al., 2015). In this case, coral morphology is a critical
metric of susceptibility as massive and branching Porites species
showed different white syndrome dynamics. Another example of
differences in the level of resistance was found by Mullen et al.
(2006), when they detected differential prevalence of a fungal
disease in three gorgonian species in the Yucatan, hypothesizing
that lower prevalence in Gorgonia mariae than in G. ventalina
resulted from its greater chemical defenses.

Another major knowledge gap is the degree and rate of
increased host genotype resistance following an epizootic. Several
studies examined whether coral populations become more
resistant following a major epizootic. For example, Vollmer and
Kline (2008) detected a small fraction of Acropora cervicornis
genotypes resistant to white band disease in Panama following an
outbreak. Currently about 5% of A. cervicornis are resistant (Libro
and Vollmer, 2016) and genes potentially involved in this process
were identified using RNASeq approaches (Libro et al., 2013;
Wright et al., 2017). In many cases, there is little understanding
of the mechanisms behind these patterns, although candidate
genes and immune mechanisms are being correlated to resistance
(Fuess et al., 2017; Wright et al., 2017). Recently, Muller and
van Woesik (2014) shed light on the role of colony genotype
with signs of white pox disease in Acropora palmata in the US
Virgin Islands. While the size of the colony and elevated water
temperatures mattered, white pox susceptibility also depended in
part on the number of past infections of the colony. The number
of previous infections could function as an integrative metric
of susceptibility which was perhaps initially based on colony
genotype sensitivity. Interestingly, the distance of a colony from
diseased colonies did not determine disease presence, suggesting
that white pox disease is likely not a contagious disease in situ
(Muller and van Woesik, 2014). Furthermore, following a major
Caribbean-wide epizootic of aspergillosis of sea fans, Kim and
Harvell (2004) suggested natural selection for host resistance as
a cause of the end of the epizootic. Support for the host resistance
hypothesis, as opposed to a changing environment or changing
pathogen virulence, was supported by 10 years of studying
marked fans on permanent transects in the Florida Keys and
Mexico, revealing large mortality from the epizootic and a large
bottleneck in reproduction following peak epizootic years (Bruno
et al., 2011). The plausibility of the host resistance hypothesis
was tested with a population model showing that host evolution
could proceed quickly enough to explain the observed decrease in
overall prevalence from ∼30% in 1997 to < 10% by 2003 (Bruno
et al., 2011). While most studies show support for host resistance
increasing after major epizootics, the only study that controlled
for pathogen strain variability (as opposed to host resistance)
was in infection trials with Acropora palmata and controlled
strains of Serratium marcescens, the causal agent of acroporid
serratiosis (Sutherland et al., 2011). This study demonstrated that
the pathogen had changed and was not able to cause the same
disease signs as the epizootic that spread through the Florida

Keys 10 years prior. While the mechanisms for individual coral
colonies to acquire resistance to a particular disease will depend
on their ability to maintain nutritional reserves and mount an
appropriate immune defense (Gibbin et al., 2019), the resistance
of the remaining individuals in a population and their ability to
reproduce and grow fast (Fuess et al., 2018). These characteristics
may limit acquired resistance as a viable mechanism to maintain
coral populations.

Although researchers have recorded these differences in
genotype-based disease susceptibility, the underlying genomic
mechanisms that contribute to various aspects of disease (e.g.,
permissiveness, tropism, immunity, tolerance) are not yet well
elucidated but are ongoing (e.g., Sato et al., 2017). Several studies
on the genetic basis for both coral(e.g., Fuller et al., 2020)
and symbiont (e.g., Chakravarti et al., 2020) thermal tolerance
could be a model for future experiments linking population
genomic features to disease resistance or susceptibility, and the
increasingly sophisticated use of comparative genomics (e.g.,
Kitchen et al., 2019; Rodríguez-Casariego et al., 2020) will
accelerate these efforts.

Coral Immune Responses and Their
Influences on Disease
Host phenotypic variability also poses significant challenges for
identifying the proximate causes of a disease outbreak. Corals
rely on the innate immune defense system, and do not have
the adaptive arm of immunity as do vertebrates. It was often
thought that innate immunity in corals was primitive and led
to an oversimplified view that corals all had the same immune
capabilities. But, variability in disease presentations, lesion sizes,
and color among different hosts when infected by the same
pathogen suggest otherwise (Williams et al., 2020) and are likely
due to differences in host innate immune systems(Mydlarz and
Palmer, 2011). Host cell physiology such as receptor binding
sites used by the pathogen, host cellular machinery used for
pathogen replication, and apoptosis can also lead to differences
in the way diseases manifest themselves in different coral species
(Fuess et al., 2017).

The study of coral host physiology and genomics has
progressed in recent years, with studies looking at immune
responses in naturally diseased corals, or experimentally exposed
to other diseased corals and pathogens and immune elicitors,
such as lipopolysaccharides (LPS). These studies identify the
known repertoires of innate immune responses: self/non-self
recognition, signaling, effector responses, and wound healing
(Mydlarz et al., 2016; Palmer and Traylor-Knowles, 2018).

Several patterns in the data sets emerge leading to some
potential coral immune targets for further study. The gene
DMBT-1 is upregulated in several corals exposed to LPS
(Connelly et al., 2020), and live bacteria Vibrio challenges
(Wright et al., 2017), and importantly is associated with increased
survival. DMBT-1 likely maintains coral mucosal immunity and
microbial homeostasis (Libro and Vollmer, 2016; Zhou et al.,
2019) and is capable of agglutinating bacteria and activating the
complement system. Although it is tempting to assign immune
competence of a host to one gene or pathway, the response
is likely multifaceted. In fact, most transcriptomic studies of
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corals see changes in GO terms associated with immunity
that may allow for more direct comparisons between different
coral species and diseases. In several transcriptomic studies
the GO terms for Immune Response Regulation and Innate
Immunity (and variations within those) are typically enriched
(Fuess et al., 2018, 2020; Zhou et al., 2019; Takagi et al., 2020).

The potential for a coral species to exhibit transgenerational
plasticity can also lead to variation in disease resistance that
can confound coral disease diagnostics (Putnam et al., 2017;
Torda et al., 2017). New phenotypes of offspring that arise post-
stress of the parental colonies can be a result of transfer of
nutrients and hormones, as well as beneficial microbes that could
protect against dysbiosis (see section “Part II: The Microbiome”;
Torda et al., 2017). Epigenetic processes that regulate gene
expression such as gene methylation are also a mechanism for
transgenerational plasticity. While gene methylation has not been
directly studied in the context of coral disease yet, studies looking
at other stressors such as heat and nutrient addition do show
methylation of immune-related adhesion and signaling genes
in addition to housekeeping genes (Dimond and Roberts, 2016;
Liew et al., 2020). It is important to note that these mechanisms
will not benefit all coral species equally, and species that are
relatively short-lived and brood their embryos may be better
candidates for adaptation due to transgenerational plasticity
that could lead to disease resistance, such as Porites astreoides
(Pinzon et al., 2014; Fuess et al., 2017).

Immunity in corals varies with many environmental factors
and with exposure to pathogens whether or not disease
phenotypes are apparent (Mydlarz et al., 2008, 2009; Pinzón et al.,
2015). Some of these responses are to directly mitigate the stress,
such as antioxidants, fluorescent proteins and melanin cascade,
other have upstream signaling roles such as NFkb and NOD-
like receptors (Traylor-Knowles and Connelly, 2017). These
environmentally and pathogen induced variations in immunity
change through time (Pinzón et al., 2015; Traylor-Knowles and
Connelly, 2017), leading to different susceptibilities to diseases
and inconsistencies in the development of disease signs. Such
persistent natural variation in immune status makes it more
difficult and complex to determine the baseline or health status
of a coral at any given time.

Knowledge Gaps and Ways Forward in
Coral Host Biology
In many of the studies mentioned above, it was not known
whether the beginning or end of an epizootic was affected by
host resistance and tolerance or changing pathogen virulence
or change in some aspect of the environment (see sections
below). While we have made progress in understanding the
mechanisms of host immunity, we still do not understand the
main drivers of variation in immunity both within and between
species. Overcoming this knowledge gap is particularly needed as
fast spreading coral diseases still are causing losses throughout
Caribbean reefs (Aeby et al., 2019).

The emergence of more genomic and proteomic tools will
help elucidate the pathways important to coral disease resistance
and tolerance (Okamura et al., 2019; Ricci et al., 2019), however,

we still need to understand how they vary and why. The
“hidden” effects of evolutionary and environmental history and
transgenerational plasticity of an individual coral or population
result in a reduced ability for direct quantification and links
between host factors and disease outbreaks (Torda et al., 2017).

PART II: THE MICROBIOME

For several decades, coral-associated bacteria (and to a lesser
degree viruses) were examined in an explicit effort to link some
microbes to specific disease phenotypes (Table 2). Yet for the vast
majority of cases, linkages between a given taxa (or group) and a
coral disease are inconclusive. It is now clear that the fundamental
properties of the coral microbiome (see below), combined with
current standard operating procedures in coral disease ecology,
plus conventional assumptions about disease etiology, have
contributed to our inability to recapitulate the standard one
pathogen-one disease paradigm. Here we provide background on
the coral microbiome and present new ideas on how to integrate
this information into coral disease ecology studies.

Corals Play Host to Unique and Dynamic
Coral Microbiomes
Since the late 1990’s it has become increasingly clear that
most organisms host a wide variety of microbes that are
responsible for aspects of host health and longevity, as well as
ecosystem functioning (Dethlefsen et al., 2007; Manor et al., 2016;
Apprill, 2017; Burkepile and Thurber, 2019). This concept that
the microbes or “microbiome” contribute to the functioning,
and even evolution, of marine taxa is now well established
(Wilkins et al., 2019). The exact nature of these relationships
is often unknown and likely dynamic and host taxon-specific.
Luckily, recent methodological advances in tracking microbial
and even viral communities with fine resolution are dramatically
advancing our knowledge about the membership and function of
these host-associated microbiomes.

Corals contain dozens to hundreds of species-specific bacteria
that can both contribute to and detract from coral health
depending on the state of the host and the environmental
context at the time (Blackall et al., 2015; Thompson et al., 2015;
Bourne et al., 2016; Pollock et al., 2018; Rosales et al., 2019).
In particular, environmental stressors such as climate change,
reduced water quality, and habitat exploitation all can affect the
composition and function of the coral microbiome (McDevitt-
Irwin et al., 2017). Thus, coral microbiomes and viromes
dynamically respond to host and environmental perturbations
in a variety of ways (Bourne and Webster, 2013; Bourne et al.,
2016; Thurber et al., 2017). Yet how the structure and function
of these microbiomes relate to coral health and resilience to
anthropogenic and natural stressors remains a major area of
investigation because most of the linkages between changes in the
microbiome and coral health remain correlative.

Drivers of Coral Microbiome Dynamics
As a research community, we have extensively documented
how several biotic and abiotic factors contribute to coral
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TABLE 2 | Proposed causative agents to coral diseases.

Proposed causal agent Described disease Studies

Aspergillus sydowii Aspergillosis Alker et al., 2001

Aspergillus sydowii and other fungal pathogens Aspergillosis Soler-Hurtado et al., 2016

Vibrio coralliilyticus Bacterial bleaching Ben-Haim et al., 2003a,b

Boring cyanobacteria and novel bacteria Black band Miller et al., 2011

Consortium Black band Cooney et al., 2002; Frias-Lopez et al., 2003, 2004;
Sekar et al., 2006, 2008; Barneah et al., 2007;
Voss et al., 2007; Sato et al., 2010; Séré et al., 2016

Cyanobacteria Black band Frias-Lopez et al., 2003; Voss et al., 2007;
Hutabarat et al., 2018

Cyanophyte pathogen Black band Rützler and Santavy, 1983

Desulfovibrio Black band Viehman et al., 2006; Brownell and Richardson, 2014

Geitlerinema species Black band Richardson and Ragoonath, 2008

Novel T4 bacteriophages Black band Buerger et al., 2019

Pseudoscillatoria coralii Black band Rasoulouniriana et al., 2009

Roseofilum Black band Buerger et al., 2016

Scuticociliatia Black band Bourne D. G. et al., 2008

Vibrio species Black band Arotsker et al., 2009

Arcobacter sp. (JF831360), cilliates: Morph1 (JN626268) and Morph2
(JN626269)

Brown band, white syndrome Sweet and Bythell, 2012

Porpostoma guamensis Brown band Lobban et al., 2011

Corynebacterium (KC190237), Acinetobacter (KC190251),
Parvularculaceae (KC19027), Oscillatoria (KC190271), two Vibrio species

Dark spot Sweet et al., 2013

Pseudoalteromonas piratica Montipora white syndrome Beurmann et al., 2017

Vibrio coralliilyticus Montipora white syndrome Ushijima et al., 2014

Vibrio owensii Montipora white syndrome Ushijima et al., 2012

Icosahedral virus-like particles Porites white patch syndrome Lawrence et al., 2015

Shimia marina and Vibrio hepatarius Porites white patch syndrome Séré et al., 2013

Vibrio tubiashii Porites white patch syndrome Séré et al., 2015

Vibrio harveyi Rapid tissue necrosis Luna et al., 2007

Serratia marcescens Acropora Serriatosis Sutherland et al., 2011

Vibrio species Skeletal tumors Breitbart et al., 2005

Photobacterium damselae and multiple Vibrio species Ulcerated yellow spot syndrome Cervino et al., 2012

Vibrio species Ulcerative white spot Arboleda and Reichardt, 2010

Gram negative bacterium White band Peters et al., 1983

Vibronales and Rickettsiales White band Gignoux-Wolfsohn and Vollmer, 2015

Bacterial Strain BA-3 White plague Barash et al., 2005

Nucleocytoplasmic large DNA virus White plague Soffer et al., 2014

Thalassomonas loyana White plague Thompson et al., 2006

Vibrio species White plague Chimetto Tonon et al., 2017

Aurantimonas coralicida White plague type II Denner et al., 2003

Serratia marcescens White pox Patterson et al., 2002

Vibrio alginolyticus White syndrome Zhenyu et al., 2013

Consortium of Vibrio species White syndrome Sussman et al., 2008

Vibrio harveyi White syndrome Luna et al., 2010

Vibrio species Yellow band (blotch) Cervino et al., 2004, 2008

microbiome variability. For example, it is clear that the
largest contributing factor of microbiome composition is host
phylogeny (Rohwer et al., 2002; Chu and Vollmer, 2016;
Pollock et al., 2018). But along with host specificity, variation
in many co-occurring variables associated with geographic
location (e.g., latitude, temperature, and depth) can contribute
significantly to differences in the microbiome (Littman et al.,
2009; Kvennefors et al., 2010; Pantos et al., 2015; Glasl et al., 2017;

Pootakham et al., 2019). Two main factors, host species and
geographic variation, can obscure clear patterns during disease
outbreaks. For example, the co-occurrences of microbiomes with
disease outbreaks may falsely lead researchers to believe that a
particular microbial taxon is responsible for a disease outbreak,
when in fact the uninfected coral lacks that microbe because of
a difference in geographic location (Roder et al., 2014) or is a
cryptic species susceptible to the infection (Cuvelier et al., 2014).
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Corals are composed of four major compartments each
containing unique microbial members (Ainsworth et al., 2015):
the surface mucus layer, the tissues (gastroderm and epithelium),
the coelenteron (stomach), and the skeleton (Pollock et al., 2018).
Many of these compartment-specific bacteria are core members,
as defined by a baseline prevalence, while others are considered
transients (Ainsworth et al., 2015; Hester et al., 2016; Zaneveld
et al., 2016). Membership and environmental responsiveness of
the coral microbiome varies across the compartments, with the
mucus being the most variable and responsive (Pollock et al.,
2018). Even more surprisingly, coral size and whether corals
are physically touching other benthic community members (e.g.,
macroalgae) are major variables that drive differences in coral
microbiome diversity and function (Zaneveld et al., 2016).

On top of all these biotic factors, abiotic factors such as
nutrient pollution, anomalous temperature, PCO2 levels, and
sedimentation can act alone or interact to cause disruptions in the
microbiome that can either preclude an outbreak or directly lead
to one. However, a recent meta-analysis found that patterns can
be found in how different members of the microbiome respond
to these local and global stressors (McDevitt-Irwin et al., 2017). It
was found that almost all stressors induced three kinds of changes
in the microbiome: (1) shifts in alpha diversity, (2) shifts in beta
diversity, and the (3) loss of one major group of bacteria, the
Endozoicomonas clade, hypothesized to be involved in nutrient
cycling in corals.

Challenging the “One Disease, One
Pathogen” Hypothesis
When evaluating coral disease, researchers must be aware of
potentially misleading, but common, baseline assumptions about
the properties and patterns of microbial prevalence, abundance,
and function in the host. Several papers concluded that due to the
persistent presence of some bacterial taxa (i.e., high prevalence)
in apparently healthy animals that such members cannot be
the source of a disease (Casas et al., 2004; Kline and Vollmer,
2011). Yet commensal and even mutualist bacteria can become
pathogenic under various conditions (Seyedsayamdost et al.,
2011). For example, a recently discovered yet common bacterial
parasite, Candidatus Aquarickettsia, is commonly found in corals
but proliferates when exposed to elevated nutrients reducing
coral growth and increasing tissue loss and mortality (Shaver
et al., 2017; Klinges et al., 2019). What’s more, this parasite has
been found to be associated with disease susceptibility in some
coral genotype backgrounds (Klinges et al., 2020). Pathogenesis
also may initiate from either an extrinsic, invading pathogen
or from an intrinsic member of the microbiome sometimes
referred to as a “pathobiont” (Sweet and Bulling, 2017) or
“opportunistic.” The increase in abundance or virulence activity
of this pathobiont response to some perturbation may be the
trigger that begins the process of disease onset. An example in
corals is, Vibrio coralliilyticus, a thermally sensitive pathogen
that requires elevated temperatures to induce chemotaxis toward
coral and to express virulence cassettes for infection, with higher
rates of tissue lysis and disease progression when seawater
temperatures rise above 29–30◦C (Ben-Haim et al., 2003b;

Cervino et al., 2008; Séré et al., 2015; Tout et al., 2015; Garren
et al., 2016). The pathobiont concept was developed based on
evidence that gastrointestinal inflammatory diseases are often
caused by bacterial species found in healthy hosts, including
Clostridium difficile and Heliobacter pylori (Chow et al., 2011).
Similarly, the Rhodobacteraceae increased fourfold in coral white
syndrome lesions compared to healthy tissues (Pollock et al.,
2017; Rosales et al., 2020) and are implicated in Stony Coral
Tissue Loss Disease that is currently devastating Caribbean
reefs. Therefore, it is possible that some coral diseases are
caused by pathobionts rather than environmentally acquired
pathogenic agents.

Other standard assumptions contributing to our inability
to identify clear patterns of disease etiology are that one
must: (1) isolate a given strain that upon application leads
to a recapitulation of the disease (Koch’s postulates), (2)
observe a strictly distinct microbial alternative state, or (3)
identify statistically more abundant taxa that coincide with the
apex phenotype of the disease. Unfortunately, due to these
assumptions, attempts have been generally unfruitful in linking
a pathogen to a coral disease. This is also true in other complex
host-microbiome systems (but see exceptions described below).
It has become apparent that the etiology of many diseases that
initiate in mucosal membranes, including periodontitis, lung
infections, bacterial vaginosis, and gastro-intestinal inflammatory
diseases, do not involve monocultures of bacteria, but rather
heterogeneous communities of organisms (Nelson et al., 2012;
Lamont and Hajishengallis, 2015). Pathogenesis of disease can
arise from polymicrobial synergy that results in disruption of
microbiome homeostasis and normal host immune function
(Nelson et al., 2012; Vayssier-Taussat et al., 2014; Byrd and
Segre, 2016). For example, although some model pathogens infect
corals, such infections lead to downstream alterations in the
microbiome that may contribute to the ultimate death of the
host (Welsh et al., 2017). When V. coralliilyticus is added to
naïve corals, the infection can be transient while opportunist
bacteria such as Rhodobacterales and Cytophagales become more
abundant and begin to dominate the coral system.

This invasion by opportunists during an epizootic is likely
a common feature of coral diseases. This is evident by the
observation that several common Caribbean coral diseases,
including yellow-band disease, dark-spot syndrome, white pox
disease, and white plague, all of which do not display typical
transmission dynamics characteristic of contagious diseases
(Muller and van Woesik, 2012, 2014; Klinges et al., 2020),
suggesting intrinsic properties of the holobiont may play a
large role in disease initiation and progression. In these cases,
it is important to examine host organismal traits that affect
disease susceptibility and environmental thresholds that serve
as tipping points for disruption of microbiome homeostasis
and disease induction rather than focusing on transmission
dynamics of pathogens.

Dysbiosis as a Hallmark of Coral Disease
Another major hurdle in our attempts to identify the bacteria
that are strongly linked to disease may be a lack of accurate
paradigms for diseases in the marine system. One such paradigm
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is that diseased animals always exhibit microbial communities
that are distinct from apparently healthy congeners. Recently
Zaneveld et al. (2017) argued that under real-life environmental
conditions, coral microbiomes do not always demonstrate clear
shifts in bacterial community stable states. Instead, increases in
overall dispersion of the community are major features of stressed
corals, where high variability in the community likely represents
the host’s inability to regulate the microbiome. This quantitatively
defined “dysbiotic state” is strongly correlated with coral disease,
tissue loss, and mortality and may be a prominent feature of coral
disease progressions (Zaneveld et al., 2016; Ezzat et al., 2019;
Maher et al., 2019). In fact, although first reported in corals,
this feature of microbiome disruption as a feature of disease (in
contrast to true alternative stable states) has been described but
not formalized in many host systems, including chimpanzees
infected with Simian Immunodeficiency Virus (SIV) and the lung
microbiomes of smokers (Zaneveld et al., 2017).

Knowledge Gaps and Ways Forward on
the Coral Microbiome
Adherence to the “one microbe—one disease” as well as other
standard disease ecology paradigms have centralized our efforts
on identifying and describing the role of particular microbial
taxa. A more appropriate focus should be on understanding
successional stages in the coral disease process (Figure 3). For
example, the development of black band disease pathogenesis
in corals was linked to successional changes in the dominant
cyanobacterium associated with lesions, followed by heterotrophs
and the development of anoxia and sulfide in the microbial mat,
which enhances colonization by a variety of bacterial groups
and Archaea that intensifies tissue loss (Sato et al., 2016). It
is likely that the role of blooming secondary opportunists (or
accessory pathogens) during dysbiosis is as critical as the primary
and elusive pathogen and therefore should not be discounted.
For example, a low-abundance keystone pathogen may disrupt
normal host immune function, allowing microbiome members
that are otherwise commensal to take on a pathogenic role,
exacerbating inflammatory tissue breakdown and the disease

process (Hajishengallis et al., 2012). Furthermore, blooming
opportunists or accessory pathogens may promote further
host health declines, increase virulence of other members of
the microbiome via horizontal gene transfer of important
virulence factors (e.g., antibiotic resistance, toxin production,
flagellar motility, and sensing behavior), or modify the mucosal
environment to such as degree that the host cannot return to
normal homeostasis (Stecher et al., 2013; Rice et al., 2019).

One of the defining characteristics of the field of coral
microbiology is that it is traditionally conducted in the field,
with all of the accompanying environmental and contextual
complexities that come with studying disease ecology in in situ
studies. The coral microbiome is also often sampled in a state
of dysbiosis following disturbance (environmental factors or
pathogenesis), therefore the timing of sampling often lacks
necessary resolution. Rather than directly addressing questions
of pathogen dynamics, the opportunistic nature of outbreaks
often means that sampling more likely characterizes the wake
of pathogen disturbance in the microbiome. At the same time,
the current body of literature suggests that we often do not
sample at sufficiently frequent intervals to capture the dynamics
of pathogenesis, and are more often blending our analyses of
pathogenesis and dysbiosis. Thus, we should aim to adjust our
approaches and paradigms, develop our models, and refocus
our approaches to testing critical questions in coral disease
ecology that are more in step with what we know about animal
microbiome dynamics.

PART III: THE ENVIRONMENT

All interactions between corals and pathogens are intimately
governed by varying environmental parameters. Being sessile
and existing as a thin layer of tissue in constant contact
with the environment, corals have limited options for avoiding
unfavorable environmental change that may directly or indirectly
lead to disease. The changing nature of the environment in the
Anthropocene is likely a major factor causing coral microbiome
dysbiosis, leading to the onset of disease, and may go a long way

FIGURE 3 | The theoretical succession of the composition and diversity of microbial organisms as the coral microbiome shifts from homeostasis to dysbiosis.
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toward explaining recent rises in the prevalence of coral diseases
globally (Mera and Bourne, 2018).

Environmental stressors affect both host resistance and
pathogen virulence (see above). Similarly, changes in the
environment impacts population dynamics, spatial distributions
of hosts or pathogens or both, providing greater opportunities for
host-pathogen interactions that are favorable for the emergence
or re-emergence of disease. It is well established that many coral
diseases are connected to multiple environmental parameters.
These parameters can be abiotic (e.g., temperature, light,
nutrients) or biotic (e.g., contact with macroalgae) and can
affect disease directly (as when warmer temperatures induce
virulence factors in pathogens) and indirectly through a cascade
of events. In some cases, predictive models were successfully
developed to describe the relationship between disease dynamics
and environmental drivers (Bruno et al., 2007; Williams et al.,
2010; Maynard et al., 2011, 2015). However, many coral disease
studies are initiated in response to disease outbreaks, where long-
term environmental data do not exist, leading to difficulties in
determining the role of potential environmental drivers after the
fact (Brandt et al., 2012). Below we discuss our understanding of
how the environment affects host-microbiome relationships with
emphasis on the complexities and multiple stressors interactions
that corals and their microbiomes experience.

Thermal Stress
Several bacterial, fungal and protozoan diseases of corals are
linked to seawater temperatures, including black band disease
(Muller and van Woesik, 2012, 2014), yellow band disease
(Cervino et al., 2004; Harvell et al., 2009), and white syndromes
(Bruno et al., 2007; Heron et al., 2010; Maynard et al.,
2011, 2015). There were rare instances where the specific link
driving this relationship was identified, as when warmer spring
temperatures allow for the adhesion of Vibrio shiloi to the coral
Oculina patagonica leading to bleaching (Kushmaro et al., 2001).
However, in most cases it is unknown what is driving the link
between temperature and coral disease, whether it is a positive
impact of increasing temperature on the growth and virulence of
the pathogen(s), negative impacts to the host leading to greater
vulnerability (i.e., the compromised host hypothesis), or both.

Temperature also interacts with light intensity to effect
disease. For instance, while many field studies correlated black
band disease with seasonally warmer temperatures (Kuta and
Richardson, 2002; Voss and Richardson, 2006; Sato et al.,
2009), a laboratory experiment tested the interaction between
temperature and light on black band disease progression rates
and found that light, not temperature, was the driving factor
influencing disease progression. The high light treatments were
also associated with negative impacts to the algal symbionts
(Sato et al., 2011). Similarly, Muller and Van Woesik (2009)
demonstrated in a field experiment that reducing irradiance on
corals affected by the disease white plague led to a reduction in
disease progression rates. However, a separate study (Muller and
Van Woesik, 2011) also found that shading black band disease in
the field resulted in faster progression rates, possibly because the
dominant cyanobacterium component of the pathogenic band
experienced reduced photosynthetic pressure.

Projected climate change-related increases in sea surface
temperatures range from 1◦C (under RCP 4.5) to 3◦C (under RCP
8.5) by 2100 (Stocker et al., 2013). This increase in sea surface
temperature will likely increase overall disease risk for corals
(Maynard et al., 2017). Thermal stress as a result of abnormally
high temperatures leads to shifts in coral-associated microbial
communities (Bourne D. et al., 2008; Littman et al., 2011), a
breakdown in the symbiosis between the coral animal and its
endosymbiotic algae, and stressful physiological state for the
coral. Numerous studies report links between thermal bleaching
events and subsequent increases in disease outbreaks globally
(Brandt and McManus, 2009; Cróquer and Weil, 2009; Miller
et al., 2009; Weil et al., 2009; Muller et al., 2018; but see Ban
et al., 2013), with a dramatic example being widespread outbreaks
following the 2005 Caribbean mass bleaching event (Eakin et al.,
2010). Outbreaks following that region-wise event encompassed
multiple diseases, host species, and habitats, and resulted in
devastating losses in coral cover (Cróquer and Weil, 2009; Miller
et al., 2009; Weil et al., 2009). Coral colonies followed through
time during this event showed that the bleaching-compromised
state of the host, vs. environmental impacts on pathogens, was the
likely driver of disease incidence and severity during this event
(Muller et al., 2008; Brandt and McManus, 2009).

The abnormally high temperatures that drove the 2005
mass bleaching were driven by human-induced climate change
(Donner et al., 2007). Record seawater temperatures have
triggered several global-scale coral bleaching events since
mass bleaching was first documented in the 1980s (Hughes
et al., 2017). Adding to this complexity, other studies show
negative associations between thermal stress and coral disease
(Aeby et al., 2011b), while others suggest cooler winter
conditions prior to summer thermal events could reduce disease
outbreak likelihoods as a result of pathogen “knockback”
(Heron et al., 2010).

Ocean acidification is also considered a significant
environmental impact affecting reef-building corals, with
experimental studies showing potential shifts in coral-associated
bacterial communities toward a more disease-associated state
with decreasing pH (Thurber et al., 2009; Meron et al., 2011;
Webster et al., 2013; Morrow et al., 2015). However, explicit links
between ocean acidification and coral disease currently do not
exist, thus efforts in this area are sorely needed.

There are a number of other environmental perturbations that
influence coral disease, such as reductions in salinity (Haapkylä
et al., 2011), influxes of terrestrial pollutants or nutrients (Bruno
et al., 2003; Vega Thurber et al., 2014; Lamb et al., 2016;
Klinges et al., 2019; Rice et al., 2019), overfishing (Zaneveld
et al., 2016) and storms and cyclones (Brandt et al., 2013;
Beeden et al., 2015). These environmental factors are all linked to
human development and resource use. This introduces additional
complexity into determining the role of the environment on
coral disease due to a suite of anthropogenic stressors that may
act synergistically with climate-related stressors. For example,
several anthropogenic factors outside climate related activities are
implicated in disease outbreaks and rising prevalence levels such
as those involved in coastal development, tourism, farming, and
resource extraction (Table 3).
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TABLE 3 | Anthropogenic factors associated with increased coral disease levels.

Anthropogenic stressors
promoting disease

References

Proximity to human population
centers

Sandin et al., 2008; Aeby et al., 2011a;
Gutiérrez-Ruiz et al., 2011; Guilherme Becker
et al., 2013

Coastal land alteration Haapkylä et al., 2011

Dredging, terrestrial runoff, of
sediment or agricultural
herbicides

Sheridan et al., 2014; Aeby et al., 2016;
Lamb et al., 2016; Pollock et al., 2016

Sewage release Redding et al., 2013; Wear and Thurber, 2015

Release of human enteric
microorganisms

Sutherland et al., 2011

Increases in nutrient
concentrations

Bruno et al., 2003; Voss and Richardson, 2006;
Vega Thurber et al., 2014

Aquaculture and fish farms Garren et al., 2009; Sabdono et al., 2019

Reduction in the diversity of reef
fish assemblages

Raymundo et al., 2009

Overfishing Zaneveld et al., 2016

Injuries from fishing line Lamb et al., 2015, 2016

Tourism Lamb and Willis, 2011; Lamb et al., 2014

Sunscreens Danovaro et al., 2008

Plastic waste Lamb et al., 2018

Damage from ship grounding Raymundo et al., 2018

Interactive Influences of Local and Global Stressors
on Coral Disease
Diseases of corals are influenced by changing climate and
increasing levels of anthropogenic activities, but these
relationships are often complex and interactive (Harvell
et al., 2002; Altizer et al., 2013). Not only are these drivers
of coral disease likely to be both spatially and temporally
heterogeneous, pathogen reservoirs in the environment further
complicate our understanding of environmental influences of
coral disease. These include airborne African dust, which has
been shown to contain fungal spores associated with aspergillosis
in gorgonian sea fans (Shinn et al., 2000); sewage outfalls
off the coast of Florida, which harbor Serratia marcescens, a
human gut microbiota that has been associated with white pox
in acroporid corals (Patterson et al., 2002); and reef crevices
for microbial communities associated with black band disease
(Kuta and Richardson, 2002). Management actions to reduce
anthropogenic stress are needed at locations with high or
very high anthropogenic stress (Burke et al., 2011), and are
particularly urgent given the expected increases in sea surface
temperature (Maynard et al., 2015) that will likely drive disease
dynamics in the coming decade.

IV: BEYOND THE HOLOBIONT:
PROBLEMS AND SOLUTIONS FOR
MANAGING CORAL DISEASE IN A
VARIABLE ENVIRONMENT

Marine Reserves and Protected Areas
Marine reserves and protected areas serve to protect existing
natural space while simultaneously supplementing non-reserve

areas with marine resources. Evidence from studies testing the
efficacy of marine reserves as management tools for preventing
disease in coral populations varies. For example, no-take marine
reserves were shown to reduce coral disease levels through
mitigation of tissue injury associated with fishing activities and
derelict gear (Lamb et al., 2015, 2016) or sustaining functionally
diverse fish assemblages (Raymundo et al., 2009). High densities
of herbivorous fish within protected areas could limit algal
growth (Bellwood et al., 2003), which have been implicated as
reservoirs of pathogens on reefs in the Caribbean and Indo-
Pacific (Nugues et al., 2004; Smith et al., 2006). Exclusion of
activities that damage corals inside marine reserves that directly
damage corals (e.g., Asoh et al., 2004; Yoshikawa and Asoh,
2004) and high-intensity tourism (e.g., Lamb and Willis, 2011;
Lamb et al., 2014), is likely to mitigate disease by reducing
entry points for opportunistic coral pathogens (Page and Willis,
2008; Nicolet et al., 2013; Katz et al., 2014; Lamb et al., 2014).
Environmental influences that permeate reserve borders (e.g.,
Coelho and Manfrino, 2007; McClanahan et al., 2009; Page et al.,
2009) have been shown to limit reserve effectiveness. It is also
plausible that protected areas facilitate the spread of disease by
increasing the number of susceptible coral hosts (McCallum et al.,
2005; Bruno et al., 2007; Myers and Raymundo, 2009), or fishes
that act as vectors for coral pathogens through feeding injuries
(Aeby and Santavy, 2006; Raymundo et al., 2009).

Well-managed marine reserves may help assist adaptation to
impacts of climate change (Roberts et al., 2017), however, there is
mounting evidence that climate-related stressors can undermine
coral resistance to disease afforded by reserve protection. For
example, although marine reserves were found to mitigate coral
disease following a severe cyclone, they were found to be
ineffective in moderating disease when sites were exposed to
higher than average levels of terrestrial runoff from a degraded
river catchment (Lamb et al., 2016). This is further supported by
Hughes et al. (2017), which recently reported that water quality
and marine reserves had no influence on the unprecedented
bleaching on the Great Barrier Reef in 2016, suggesting that
local protection may provide little or no value to coral diseases
associated with temperature.

Satellite Imagery and Predictive
Modeling
The implications of climate-driven and anthropogenic outbreaks
of disease on services provided to people will require preemptive
solutions and mitigation. Early warning systems form an
important component of potential solutions. For example,
high risk areas for malaria outbreaks were predicted using
global atmospheric and ocean climate models in order to
initiate early mitigation strategies in Botswana (Thomson et al.,
2006). Forecasting is well-established in managing diseases of
agricultural crops, leading to improved deployment of planting
strategies that lower disease risk though precise pesticide
timing (Schaafsma and Hooker, 2007). On coral reefs, accurate
forecasting programs to predict bleaching have become essential
to marine resilience programs (Eakin et al., 2010) and are leading
to the development of climate-driven, coral disease–forecasting
algorithms (Maynard et al., 2011, 2015). More recently, the first
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satellite-derived water quality data were critical in assessing the
drivers of disease following chronic exposure to terrestrial run-
off from a degraded river catchment (Lamb et al., 2016) and
sediment exposure from seafloor dredging (Pollock et al., 2014),
offering the potential for identifying and forecasting locations
that are at increased risk of outbreaks from poor water quality.
Linking forecasting models to trait-based models (Laughlin et al.,
2012) in corals may help identify the specific coral individuals
or species that are at risk when environmental conditions favor
disease outbreaks.

Human-Assisted Evolution and Active
Intervention for Reef Recovery
Although it is critical to increase efforts to understand
and reduce environmental threats influencing coral disease,
recent reviews and commentaries are increasingly considering
alternative strategies that involve more active interventions.
There is discussion about the feasibility of developing coral
stocks with enhanced disease and stress tolerance through the
acceleration of naturally occurring processes, an approach known
as (human)-assisted evolution (van Oppen et al., 2015). For
selective breeding approaches to be successful, the resistance to
disease would need to be clearly identified and exhibit significant
heritability. At the same time, for microbial symbionts, vertical
or horizontal transmission of the mutualist taxa would likely
promote plasticity or benefits to fight disease while transmission
of parasites or pathogens would potentially prevent success of
such approaches. Evidence for genetic-based heritability exists
in the coral host (Meyer et al., 2009) and their symbiotic
algae (Csaszar et al., 2010) in response to thermal stress,
however, little is known about other environmental conditions
of heritability (van Oppen et al., 2015). Damjanovic et al.
(Damjanovic et al., 2019) showed that inoculation of Acropora
tenuis and Platygyra daedalae recruits with cocktails of bacterial
cultures influenced the coral microbiome, demonstrating that
the host bacterial community may be manipulated for the
purposes of enhancing coral resilience. Other probiotic studies
have shown that bacterial addition to corals prior to stress
events may mitigate some of the negative effects; what the
mechanisms behind these effect are remains unknown (Peixoto
et al., 2017). Similarly, following a coral disease outbreak, in situ
treatment could include the therapeutic use of bacteriophages.
For instance, Atad et al. (2012) found that phage-treated corals
experienced much lower levels of tissue loss compared to non-
treated corals. Furthermore, by phage-treating diseased corals,
the disease transmission rates to surrounding healthy coral
colonies were much lower. Although these intervention examples
are promising and have the potential to treat or increase
resistance to disease expansive areas, there is considerable
public resistance and unknown environmental risk. Lastly,
the scalability of these approaches may be too limited to

adequately address global and long reaching stressors such
as climate change.

CONCLUSION AND WAYS FORWARD

It is now becoming very clear from nearly four decades
of research that many coral diseases do not conform to
standard assumptions and paradigms in disease ecology.
Here, we recommend the development of new concepts to
integrate what we now know about coral species genotype
diversity, physiological or immunological variability, the role
of the microbiome, and complex nature and dynamics of
the marine environment. We recommend using a multi-
layered approach when undertaking coral disease research
that specifically integrates the host, microbiome, and the
environment. Experiments where environmental parameters are
tracked or manipulated and then holobiont genotype, phenotype,
and the microbiome are evaluated at appropriate time scales
will be our best way forward. We recognize that these are not
small asks, and the methods to integrate such disparate and
computationally intensive data streams are not fully developed.
Nevertheless, we foresee that such approaches can help not only
explain the causes and mechanisms behind disease outbreaks
but also predict disease susceptibility in different corals and
locations. We envision that by re-developing theory from the
vast amounts of empirical and observation-based data collected
thus far, we can invigorate our community and ultimately reveal
new principles that govern coral disease ecology and biology,
allowing us to better combat and mitigate current and future coral
disease outbreaks.
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