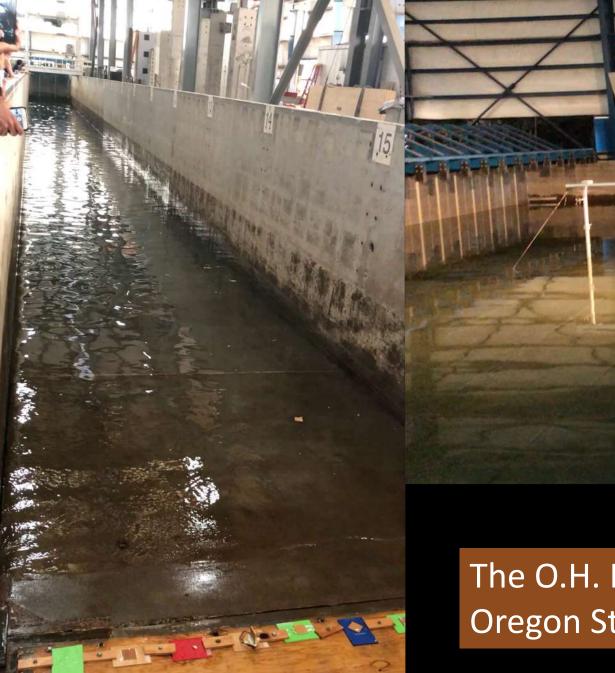


Evaluating Typhoon Haiyan's Performance and Identifying Storm Surge Prone Areas in Key Locations Across the Philippines using Advanced Circulation (ADCIRC)


Presented By: Nilo Jr Espinoza Home University: University of Guam Mentors: Dr. Clint Dawson & Dr. Jennifer Proft EF Site: DesignSafe – University of Texas At Austin

Natural Hazards Research Engineering Infrastructure (NHERI)

- The Wall of Wind at Florida International University
- The Advanced Technology for Large Structural Systems (ATLSS) Engineering Research Center at Lehigh University
- The O.H. Hinsdale Wave Research Laboratory at Oregon State University
- The NHERI SimCenter at University of California, Berkeley
- The Center for Geotechnical Modeling (CGM) at University of Calfornia, Davis
- The Large High Performance Outdoor Shake Table (LHPOST) at Unversity of California, San Diego
- The Powell Family Structures and Materials Laboratory at University of Florida
- The Large-Scale Mobile Shakers at University of Texas at Austin
- The NHERI Cyberinfrastructure and Data Management team at University of Texas at Austin
- The Rapid Response Research Facility (RAPID) at Unversity of Washington

The O.H. Hinsdale Wave Research Laboratory at Oregon State University

The University of Texas - Austin

Large-Scale Mobile Shakers

Cyberinfrastructure & Data Management

Agenda:

Introduction/Background
Methodology
Results
Discussion
Reflection
Acknowledgment & References

The Philippines

Northwest Pacific Basin – 26 typhoons a year Philippines Area of Responsibility (PAR) – 20 typhoons a year. Nine make landfall.

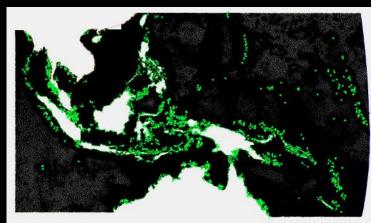
Typhoon Haiyan (2013) Central Pressure: 895 hPa Wind Speed: 315 kph Wind Gusts: 379 kph "Super Typhoon" category or Category 5 in the Saffir-Simpson Scale

DOH

1817

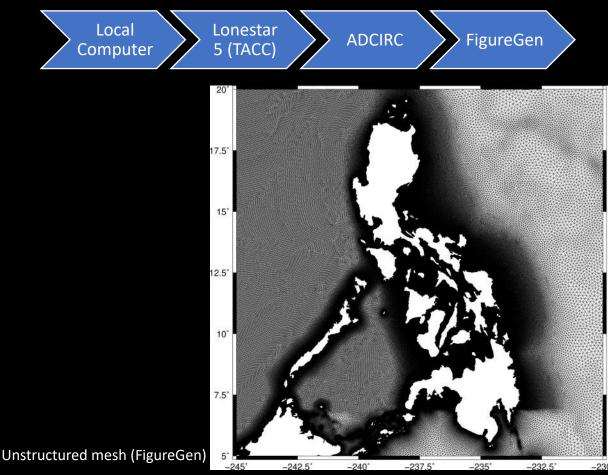
 6,000 fatalities
 28,000 injuries
 \$800 million in infrastructure and agricultural damage

https://www.ibtimes.co.uk/typhoon-haiyan-anniversary-40-powerful-photos-storm-that-devastated-philippines-1473294


SMS & ADCIRC

- Surface-water Modelling System (SMS) creating and simulating surface water models
- Original grid file: 9,598,293 nodes
- Modified grid file: 4,127,743 nodes

Original grid


Interpolated	from DEM2GRD.FS	90	
8074990 412	7743		
1	96.8764000000	17.3408400000	-9.0000000000
2	96.8818700000	17.3488900000	-7.6030000000
3	96.8688400000	17.3279600000	-10.8890000000
4	96.8799400000	17.3315000000	-6.0000000000
5	96.8902500000	17.3397100000	-6.9340000000
6	96.8689350000	17.3185250000	-9.6670000000
7	96.8784200000	17.3220600000	-6.0000000000
8	96.8870090000	17.3262330000	-4.0000000000
9	96.8778500000	17.3138300000	-8.2220000000
10	96.8716070000	17.3094460000	-9.7780000000
11	96.9781610000	17.3237240000	-17.0000000000
12	96.9710360000	17.3236140000	-10.0000000000
13	96.9832330000	17.3179000000	-10.6240000000
14	96.8845200000	17.3141100000	-5.5560000000
15	96.8799800000	17.3060200000	-9.889000000
16	96.8753840000	17.3009690000	-9.778000000
17	96.9717630000	17.3181100000	1.9670000000
18	96.9632760000	17.3218240000	-3.6370000000
19	96.9982760000	17.3128380000	-11.0000000000
20	96.9909470000	17.3159540000	-10.1110000000
21	96.9801600000	17.3108500000	2.3710000000
22	96.9697880000	17.3107470000	13.1770000000
23	96.9561430000	17.3233820000	-7.564000000
24	96.9486600000	17.3250400000	-7.384000000
25	96.8925040000	17.3120440000	-2.0000000000
26	96.8878820000	17.3035490000	-7.2220000000
27	96.8827950000	17.2957290000	-9.778000000
28	96.9634410000	17.3129820000	16.0270000000
29	96.9566940000	17.3158390000	5.3120000000
30	97.0054540000	17.3093900000	-13.3330000000

SMS grid (.grd) file

Modified grid

ADCIRC – a numerical model used on unstructured triangular mesh grid to calculate and establish the relationship between the storm's intensity with the coastal characteristics to predict storm surge.

$$\frac{\partial \zeta}{\partial t} + \frac{1}{R \cos\phi} \left(\frac{\partial UH}{\partial \lambda} + \frac{\partial (VH \cos\phi)}{\partial \phi} \right) = 0, \tag{1}$$

$$\frac{\partial U}{\partial t} + \frac{1}{R \cos\phi} U \frac{\partial U}{\partial \lambda} + \frac{V}{R} \frac{\partial U}{\partial \phi} - \left(\frac{\tan\phi}{R} U + f \right) V = -\frac{1}{R \cos\phi} \frac{\partial}{\partial \lambda} \left[\frac{p_s}{\rho_0} + g(\zeta - \alpha \eta) \right] + \frac{\nu_T}{H} \frac{\partial}{\partial \lambda} \left[\frac{\partial UH}{\partial \lambda} + \frac{\partial UH}{\partial \phi} \right]$$

$$T_{s\lambda}$$

$$+ \frac{\tau_{s\lambda}}{\rho_0 H} - \tau_* U$$
, and (2)

$$\begin{split} \frac{\partial V}{\partial t} + \frac{1}{R\cos\phi} U \frac{\partial V}{\partial \lambda} + \frac{V}{R} \frac{\partial V}{\partial \phi} + \left(\frac{\tan\phi}{R} U + f\right) U &= -\frac{1}{R} \frac{\partial}{\partial \phi} \left[\frac{p_s}{\rho_0} + g(\zeta - \alpha \eta)\right] + \frac{\nu_T}{H} \frac{\partial}{\partial \phi} \left[\frac{\partial VH}{\partial \lambda} + \frac{\partial VH}{\partial \phi}\right] \\ &+ \frac{\tau_{s\phi}}{\rho_0 H} - \tau_* V, \end{split}$$

where

t = time,

- λ , ϕ = degrees longitude and latitude,
 - ζ = the free-surface elevation relative to the geoid,
- U, V = the depth-averaged horizontal velocities,
 - $H = \zeta + h =$ the total water column,
 - h = the bathymetric depth relative to the geoid,
 - $f = 2\Omega \sin \phi$ = the Coriolis parameter,
 - Ω = the angular speed of the earth,
 - p_s = the atmospheric pressure at the free surface,

- g = acceleration due to gravity,
- η = the Newtonian equilibrium tide potential,

(3)

- α = the effective earth elasticity factor,
- ρ_0 = the reference density of water,
- $\tau_{s\lambda}$, $\tau_{s\phi}$ = the applied free-surface stress,
 - $\tau_* = C_f[(U^2 + V^2)^{1/2}/H] = \text{the bottom friction}$ term,
 - C_f = the nonlinear bottom friction coefficient, and
 - ν_T = the depth-averaged horizontal eddy viscosity coefficient.

ADCIRC Input Files

8074990 4127				ort13 7054934
1	96.8764000000	17.3408400000	-7.000000000	3
2	96.8818700000	17.3488900000	-7.603000000	primitive_weight
3	96.8688400000	17.3279600000	-10.8890000000	1
4	96.8799400000	17.3315000000	-6.0000000000	1
5	96.8902500000 96.8689350000	17.3397100000	-6.9340000000 M -9.6670000000 M	0.030000
°,	96.8784200000	17.3220600000	-6.8696666666	internal_tide_fr 1/time
ś	96.8870090000	17.3262330000	-4.0000000000	3
ş	96.8778588888	17.3138300000	-8.2220000000	9.000000 0.00000
10	96.8716070000	17.3094460000	-9.7788888888	quadratic_fricti
11	96.9781610000	17.3237240000	-17.000000000	unitless
12	96.9710360000	17.3236140000	-10.0000000000	1
13	96.9832330000	17.3179000000	-10.624000000	9.892589
14	96.8845200000	17.3141100000	-5.556000000	primitive_weighti
15	96.8799800000	17.3060200000	-9.889000000	1711701
16	96.8753840000	17.3009690000	-9.7788888888	166006 0.005000
17	96.9717630000	17.3181100000	1.9670000000	169241 0.005000
18	96.9632760000	17.3218240000	-3.6370000000	172521 0.005000
19	96.9982760000	17.3128380000	-11.0000000000	172522 0.005000
20	96.9989478888	17.3159540000	-10.1110000000	175836 0.005000
21	96.9881688888	17.3108500000	2.3710000000	175842 0.005000
22	96.96978888888	17.3107470000	13.1770000000	175844 0.005000
23	96.9561430000	17.3233820000	-7.564000000	175845 0.005000
24	96.9486600000	17.3250400000	-7.3840000000	175846 0.005000
25	96.8925848888	17.3120440000	-2.0000000000	175847 0.005000
26	96.8878820000	17.3035490000	-7.2220000000	175851 0.005000
27	96.8827950000	17.2957290000	-9.778000000	175856 0.005000
28	96.9634410000	17.3129820000	16.8278888888	175858 0.005000
29	96.9566940000	17.3158390000	5.3120000000	175859 0.005000
30	97.0054540000	17.3093900000	-13,3330000000	175860 0.005000
31	97.0123340000	17.3056250000	-15.6670000000	175861 0.005000
32	97.0156530000	17.2983890000	-13.5560000000	179286 0.005000
33	96.9944080000	17.3064790000	-9.566000000	179207 0.005000
34	96.9855580000	17.3047200000	-0.208000000	179218 0.005000
35	96.9757130000	17.3038310000	25.868000000x	179211 0.005000
36	96.9649198888	17.3049700000	27.4110000000	179212 0.005000
37	96.9412948888	17.3219800000	-3.9790000000	179213 0.005000
-38	96.9338720000	17.3248698888	-7.7960000000	179215 0.005000
39	96.9283400000	17.3213600000	-6.6760000000	179216 0.005000
40	96.9471610000	17.3183360000	4.5890000000	179217 0.005000
41	96.9016640000	17.3083800000	-2.2220000000	179218 0.005000
42	96.8972410000	17.3000480000	-6.88900000001	179219 0.005000
43	96.8911740000	17.2922710000	-11.2220000000	179220 0.005000
- 44	96.9562110000	17.3055920000	28.6220000000	179221 0.005000
45	96.9521300000	17.3122100000	16.2710000000	179222 0.005000
46	97.0198090000	17.2916340000	-10.000000000	179223 0.005000
47	97.0027350000	17.3019180000	-18.4440000000	179224 0.005000
48	97.0094510000	17.2966898888	-10.5560000000	179226 0.005000
49	97.0132480000	17.2892320000	-8.2070000000	179227 0.005000
50	96.9931820000	17.2968880000	-5.064000000	179228 8.005000
51	96.9815790000	17.2963810000	2.753000000	179230 0.005000
52	96.9702700000	17.2973986888	11.746000000	179231 0.005000
53	96.9685388888	17.2974828888	11.778000000	179257 0.005000
54	96.9345810000	17.3154990000	-1.6020000000	181359 0.005000
55	96.9422460000 96.9274670000	17.3124590000	12.5520000000	182652 0.005000
56 57	96.9105700000	17.3107720000	-1.7280000000M	182653 0.005000
58	96.9855788888	17.3071820000		182654 0.005000
59	96.9883348888	17.2987600000	-3.889000000	182656 0.005000
	96.9518928888		-10.4440000000	182657 0.005000
60		17.2978220000	12.3640000000	182658 0.005000
61 62	96.9467090000 97.0249250000	17.3056180000	27.298000000	182659 8.885888
				182660 0.005000
63 64	97.0306570000 97.0188310000	17.2800080000	-9.0000000000	182661 0.005000
65				182662 0.005000
	97.0036630000	17.2906520000	-9.1130000000 M 5.000000000 M	182663 0.005000
66 67	96.9962978888	17.2867540000	-4.5740000000	182664 0.005000
68	96.9752930000	17.2901330000	0.8970000000	182665 0.005000 182666 0.005000
69	96.9876730000	17.2890820000	-5.863000000	182667 0.005000
70	96.9654278888	17.2899630800	2.6626666666	182668 0.005000
71	96.9557730000	17.2899940000	2.0220000000	182669 0.005000
	2388029L, 548677		2.022.0000000	"fort.13.mod.13"
and an an an		0693093		10101101100113

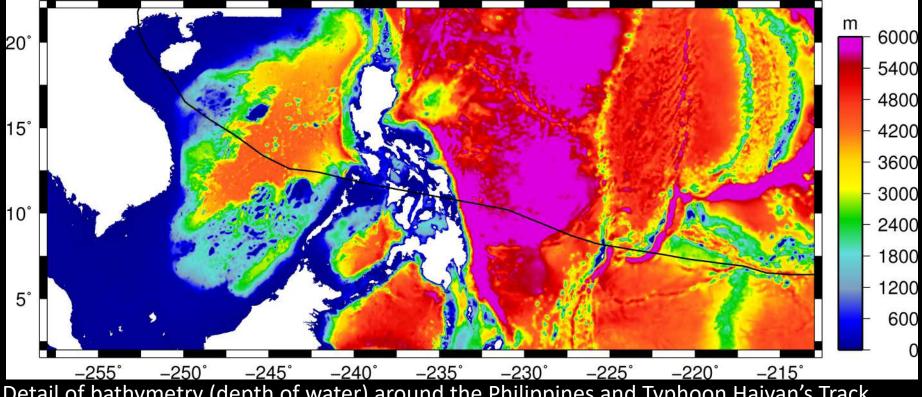
rimit	ive_weighting_in_continuit
. 0300	90
intern	al_tide_friction
l/time	
3	
	0.000000 0.000000
uadra	tic_friction_coefficient_a
initle	\$\$
.00250	90
imiti.	ve_weighting_in_continuity
71170	
66886	0.005000
69241	0.005000
72521	0.005000
72522	0.005000
75836	0.005000
75842	0.005000
75844	0.005000
75845	0.005000
75846	0.005000
75847	0.005000
75851	0.005000
75856	0.005000
75858	0.005000

_equation

sea_floor

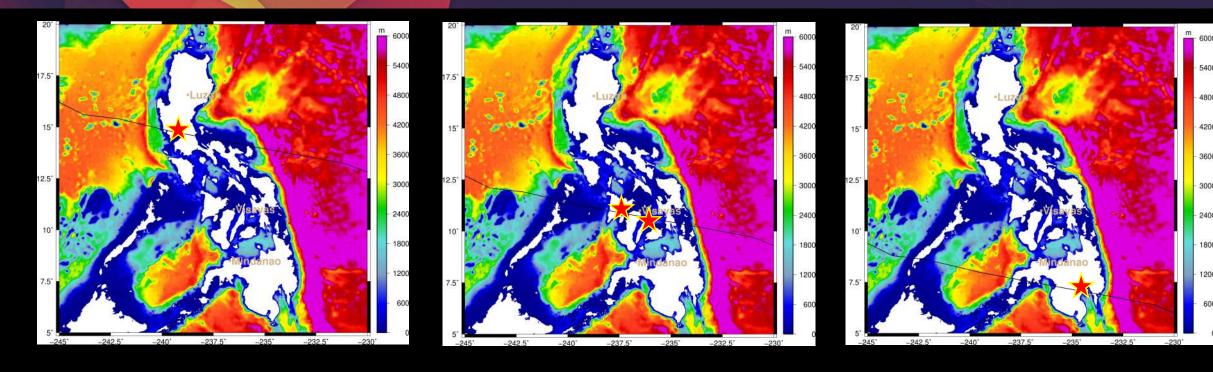
equation

fort.15


fort.22

		2013110206,	, BEST,	- M.		1616E,		1010,		- 0 2 - 1													
		2015110212,	, BEST,			1683E,		1010.		- 9	- B		8,										
		2013110218,	I BEST,	- 184		1588E,		1010,		- <u>B</u>				80									
		2013110300, 2013110306,	BEST,	12		1572E, 1567E,			DB.		1	-	- 22	8, 1886.	198.	45	е.						THERTYONE, S.
		2013110305,	BEST	12		1543E.		1884, 1888,	TD,			÷.	82	8, 1887.	188	22	- 21	12		1	÷.	1	THERTYONE, S.
		2013110318,	BEST.	12		1629E,	31		TD.	- 2	10	÷.	80	8, 1987.	180.	45	÷.	- 51	÷.	- ē.	÷.	14	THIRTYONE, S.
		2013110400,	BEST.			1515E.	35,	596.	TS.	- 1 2		- R.	. 82	0. 1997.	180.	45	- 81		w	6	- 61		THERTYONE, S.
	Ξ.	2015110406	OEST.			15815.	48	\$93.	TB.	34, NEQ.	45,	48.	40.	45, 1085.	170.	35.	ě,	÷.	1.		÷.		HAITAN, S.
		2015118412,	BEST.	- ÷.		14875.	45	585		34. MEQ.	58,		467	58, 1888,	190.	35.	6.				÷.		HAITAN, M.
		2013130418,	BEST	0,		14720,	55.			34, MED.	55,	58,	50.	55, 1088,	198.	28.			- W.		0	0,	HAIYAN, D.
P. 2		2015110410,	, BEST,		6484	14738.	55.			50, MEQ,			30,	36, 1886,	198.								HATYAN, D.
		2013110500,	, BEST,	- Ø.,		1457E,				34, MDQ,	55,	58,	- 50,	55, 1886,	200,	15,					0,	10,	HAIYAN, D.
		2013110102;	BEST	- 19a		1457E,				50, M50,	38,	38.	30,	38, 1986,	288,	15,	R.,	186			. Bi	181	HAIYAN, D,
		2013120506,	usst,	1 0		1442E.				34, MEQ,	55,	50,	50,	55, 1025,	210,	15,	ж,	. Ø.,		. 94	ο,		HATTAN, D.
		2013110506,	, BEST,	9.		14420,				58, MCQ.	30,	38,	30,	38, 1085,	210,	45,	. e,		. We	. 81	2,	10.	HAIYAN, D.
		2013138506,	, 0657,	4.		14425.				64, MEQ.	15,	38.		15, 1885,	210,	15.		1.0		- Bri-	2		HATYAN, D. HATYAN, D.
		2013110512, 2013110512,	0157	1		1429E, 1429E,				34, MEQ. 58, MEQ.	78, 45,	48,	40,	78, 1886, 45, 1886,	218, 218,	15, 15,	8	- 20		-	-		HATTAN, D.
		2013110512,	0151	÷.		14296.				54, MEQ.	25	25,	20.	25, 1086.	210,	127	- 22	- 22		÷.	8	1	HAITAN, D.
		2013130510,	0151	1		14136.				34, 800,	98.	88.		90, 1007.	210	~ 맛.	- 21	12		12	÷.		HAITAN, D.
		2013110518.	BEST			14136.				54, NEQ.	45.	45.	45.	45, 1887	210		1	- 21	1	- R.	2	÷.	HATTAN, D.
		2013130518	8857	. a.		14136			÷.	64. MED.	25,	25	25.	25, 1887,	210		8.	12		- R	1	10	HATTAN, D.
		2013110500	atst.	10.		1397E.		926		34. MED.	185.	95.	95.	185, 1887.	210		- E.	- E.			÷.	÷.	HAITAN, D.
	н.	2013110600.	REST	140		13978.		926,		14. MED.	45.	65,	45.	65, 1007.	210.		- W.	- R.		÷.	÷.	4.	HATYAN, D.
P. 1	ά.	2011118680.	BEST	- a.		1397E.		926.		84, MEQ.	35.	35.	35,	35, 1987,	210.		÷.			1.	÷.		HATYAN, D.
P. 1	£.,	2013130606.	BEST.	0.	760.	13846.	135.			34, MEQ,	115.	185.	195.	115, 1996,	226								HATYAN, D.
P. 3	н.,	2013118686.	DEST.	4.	760.	13040.	135.	923.		EQ. NEQ.		65,	45.	45, 1986,	220,		8,		W			4.	HATYAN, D.
	п.,	2013118686,	BEST,		764.	13005.	135.	922.		44, NEQ.	35.	36,	35,	35, 1006,	220.			- 84				4.	HAIYAN, D.
P. 1		2013130612.	, BEST,		798.					34, NEQ,		129.	120.	125, 1006,	289,								HATYAN, D.
		2013138612;	, BEST,	а,		1361E,				ER, NEQ,				75, 1896,	296,2		8,					18,	HATYAN, D.
		2013110612,	, BEST,	۰,	2914	1361E,				64, MEQ,	- 45.	46,	45.	45, 1886.	299)		- Ø.	- #e				- 4	HAIYAN, D.
		2013110618,	, BEST,	- 1 0 e	82%	1343E,			8T+	34, MEQ,	326,	96.	110,	125, 1886,	289,	32,	- 94	184			- 9 4		HATYAN, D.
		2013110618.	, BEST,		950	1343E,				EO, NEQ,	- 68.	66,		65, 1886,	299,	32.	- Ø2	151	We.		- 94	- W .	HAIYAN, D.
		2013110618,	+ BEST,		82%	1343E,		597.		#4, MEQ,	46.	38,		45, 1096,	246,	-12,	<u>8</u> ,	15		- 96			HAIYAN, D,
		2013110700,	BEST		87%	1327E,		987,	81.	84, NEQ,	125.	96,	118,	125, 1086,	200	36,		201		. 97	<u>.</u>	- 16-	HAITAN, D.
		2013110700,	, BEST,			1327E, 1327E,		907, 907, 907,	ST	60, NED,	68) 45,	56.	50, 25,	45, 1096, 46, 1096,	280,	-15-		201		. <u>8</u> 6	. 8		HATYAN, D.
51.5	21	2013110700, 2013110706,	BEST, BEST,	1	871.	13105.		983.		64, NEQ, 34, NEQ,	125.	38, 95,	118.	45, 1086, 125, 1083.	280,	15. 17.	8	284		- <u>8</u> -	8.	4	HAIYAN, D. HAIYAN, D.
	н.,	2013110706,	BEST	- 62		1310E.		983,		34, NEQ, 58, NEQ,	68,	86.	50,	45, 1083,	288,	"招	÷.	25, 26,	2	2	8	10	HAITAN, D.
	Ш÷.	2013110706.	BEST	- Q.		1310E		985.	87	64. NEQ.	45.	38.	26.	45, 1083,	200	説		26			÷.		HAITAN, D.
		2013110712.	BEST.	- 60		1290E.		895		54, MEQ,	198.	100.	116.	138, 1883;	280	12.	÷.	25.	W			- A.	HAITAN, D.
		2015110712,	BEST	- 60		1290E.		895.	87.	50, MEQ,	46.	68,	56,	78, 1883,	280			25			÷.	10.	HAITAN, D.
	÷.	2013110712	BEST	- 64	182%	1298E	178.	895,	87.	64, NEQ,	68,	36	38,	58, 1883,	260.		.0,	25			8,		HAIYAN, D.
		2013110718,	BEST.			1269E.		895		84, MEQ,	130.			138, 1698,	220		0.	25.					HAIYAN, D.
P. 3	1 1.	2013110718,	BEST		1868.	1269E	176,	8951	87,	50, MEQ,	65,	68	68,	78, 1000.	220,			25,				10.	HATYAN, D.
P) 3	н.,	2013110718,	BEST			1269E,		895.		64, MEQ,	- 58,			50, 1000,	220,			25.					HAIYAN, D.
		2813110808,	, BEST,	- Ø.		1247E,		8997		34, MEQ,	138,			138, 1888,	228					1 Bec.			HAITAN, D,
		2013110500,	, 86874	. 24		1247E,		899.		58, MEQ,	45.	68.	- 60,	70, 1020,	220,			28.				191	HAIYAN, D.
		2013110508,	, BEST,	- Ar		1247E,		897.		64, MEQ,	58,		-401	58, 1020,	220	()))	<u>.</u>	28,	- He -	- Br	- <u>9</u> -	120	HAIYAN, D,
		2013110506, 2013110506,	BEST, BEST,	- 25		1225E, 1225E,		914) 914		54, MEQ, 58, MEQ,	138, 65,	115, 68,	128,	138, 1882, 78, 1882,	288, 288,	10,	- 81	10, 18,	1		8	4	HAIYAN, D. HAIYAN, D.
		2013110505,	BEST.			12256.		914		64. MEQ.	58.	45.	40.	58, 1882.	280	- 10 L	2	10.		2	8	÷.	HAITAN, D.
		2013110502,	BEST			12284E.		726,		54, MEQ.	138.	115	120.	138, 1884,	200	18.	- 21	26.			8		HAIYAN, D.
		2013120512,	BEST			1284E.		926.		50, MEQ.	45,	58	-68,	70, 1884,	280,	15.	2	20.	1	1.	8	1	HAITAN, D.
		2013120612.	BEST.	- ÷.		1284E.		928.	100	64, MEQ,	58.	45.	48.	58, 1984,	280	15.	- E.	28	- W.	- A.	- R		HATYAN, D.
		2013110818.	BEST.			11795.		933.		34. MEQ.	138.	126.	128.	138, 1084.	200.	10.	- a,	10.1			6.		HAITAN, D.
		2010110818,	0551			11776.		933.		50. MED.	65.	65.	85.	45. 1884.	280	10.	- E.	- ē.	1.	1.	÷.		HAIYAN, D.
P. 1	12.	2013110818,	0157.	- e.	124N.	11798.	128.	933,		54. MED.	40.	40.	40.	40. 1004.	280.	10,	0,				÷.		HATTAN, D.
P. 1	a.,	2013110100.	0057	- Q.	1260.	11670.	115.			34, MEQ,	130,	128	120,	130, 1084,	286								HAIYAN, D.
P. 1	а.	2813110908,	. 8851.	۰.	1260.	11628.	515,			50, NSQ,				78, 1884,	280,								HATTAN, D.
10, S	ц.,	2015110100,	, DEST,			11678,				£4, NDD,				45, 1004,	200,								HAIYAN, D.
P, 1	ц.,	2013110786,	DEST,		134N,	1166E,	105,	9662		34, 100,	130,			138, 1884,	210,	15,	а,				8,		HATYAN, D.
		2013120906,	, BEST,			1144E,				50, MDQ;	70,	70,	.78,	70, 1004,	210,								HATYAN, D.
		2013110986,	, 0851,			1166E,			TT.	64, NEQ.	45.	.45,		45, 1884,	210,	15,		- Ø,	. W.	0,	ο,	18.	HATYAN, D,
		2013130912,	, OEST,			11515.				34, MCQ,	120,	118,	118,	120, 1084,	280,	-15,			W.		<u>.</u>		HAIYAN, D,
		2013110912,	, BEST,			11218.			Tr.	50, MEQ;	68,	40,		48, 1884,	284	-#e	- 5-	- 19-		8.			HATYAN, D.
		2013110912,	, BEST,			11010.			TY,	64, 100,	35,	15,	30,	35, 1004,	286	10		- 191		- <u>B</u> -	2.		HEATYAN, D.
		2013110918,	, BEST,	Q .		111105.	95. 95.		10	34, MEQ, 14, MEQ,	128,	118.	110,	120, 1025, 40, 1025,	280, 280,	18.		. 19		- <u>P</u> -	2		HATYAN, D. HATYAN, D.
		2013110916, 2013110916,	BEST, BEST,	- 21		11106, 11156,			TT:	54, NEQ.	35,	60, 35,	80. 35,	35, 1885.	280	10, 10, 10,	8. 8.	- 21	N.	- B-	÷.	*	HATYAN, D.
		20131110010,	REST			1101E,			Π. Π.	34, NEQ,	120.	118.	110,	128, 1885.	200	15.	8		H.	- 81	÷.	1.	HAIYAN, D.
		2013111000.	8651			1101E.				SR. MED.	60.	48.	64	50, 1005,	288	- 32	- 21	- 82		10	÷.	12	HAIYAN, D.
			1000																				7.468.31 P.

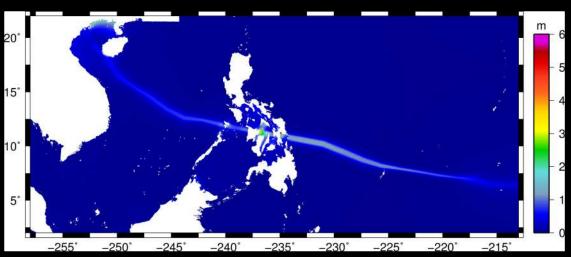
fort.13


1.13.mod.13" 9921158L, 203169544C

Typhoon Haiyan Validation

Detail of bathymetry (depth of water) around the Philippines and Typhoon Haiyan's Track (black line).

Synthetic Typhoon Haiyan Tracks

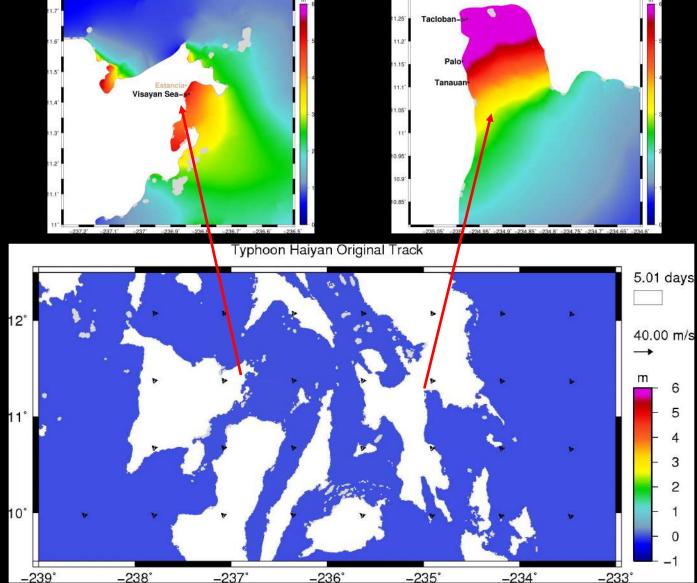

Luzon Track +3.0N or 333 km 个

Visayas Track -0.8S or 87 km 🗸 Manila: 13 million^{*} Cebu & Iloilo: 3.5 million^{*}

Mindanao Track -3.5S or 420 km 🗸 Davao: 2.5 million*

* Philippine Statistics Authority

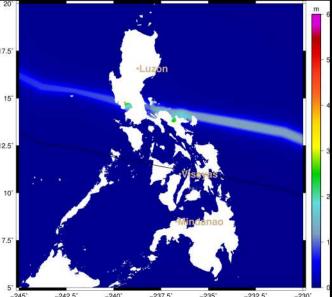
Typhoon Haiyan Original Track Results

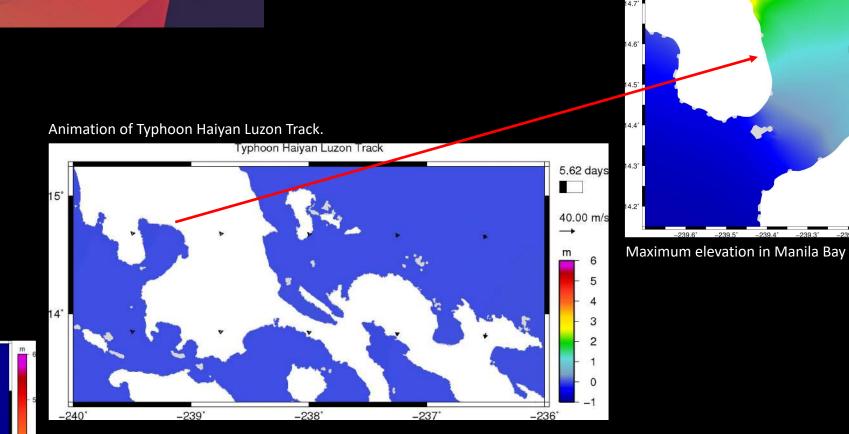


Typhoon Haiyan cyclogenesis to decay.

Location:	Modelled Result (m):	Field Data (m):
Tacloban	7.6	7.9 ^[*]
Palo	6.0	5.7[*]
Tanauan	5.7	5.4 ^[*]
Estancia	5.0	4-5[+]

[*] (Soria et.al., 2016) [+] (Nationwide Operational Assessment of Hazards, 2013) Maximum elevation in the Visayan Sea.


Maximum elevation in Leyte Gulf.



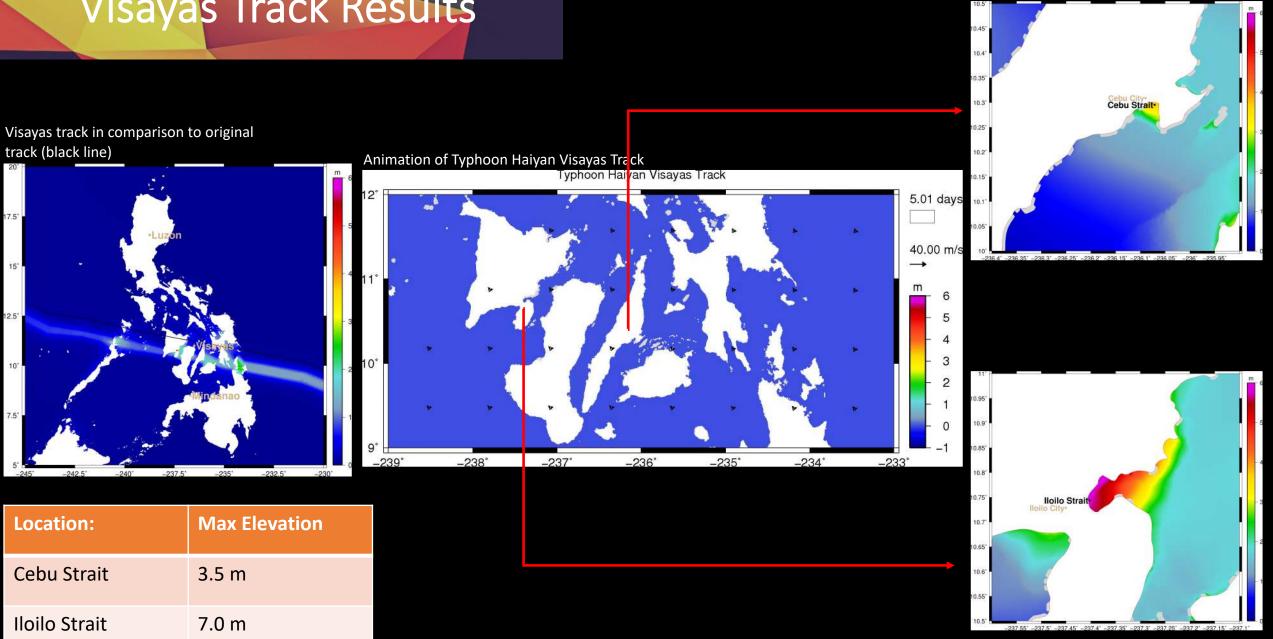
Animation of Typhoon Haiyan in the Visayas Region

Luzon Track Results

Comparison of Luzon track and original track (black line).

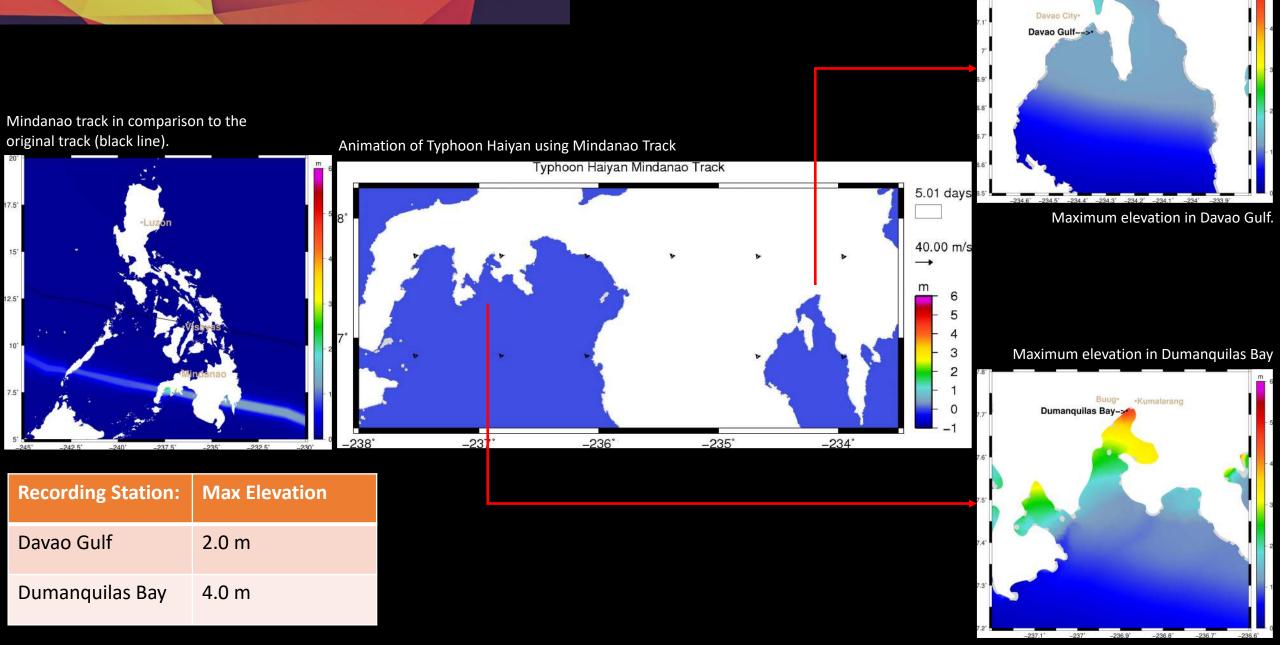
Location:	Modelled result:
Manila Bay	1.9 m
North Manila Bay	5.0 m

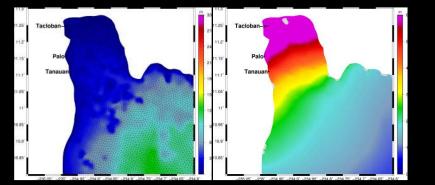
North Manila Bay •Hagonoy

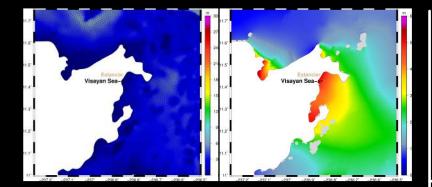

> City of Man Manila Bay•

Orani

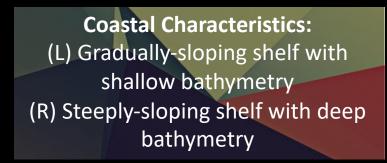
Visayas Track Results

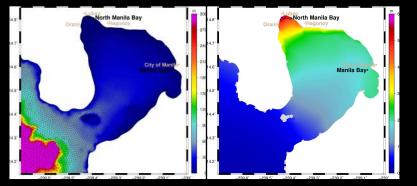

12.5


Maximum elevation in Cebu Strait

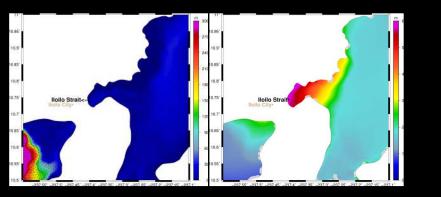


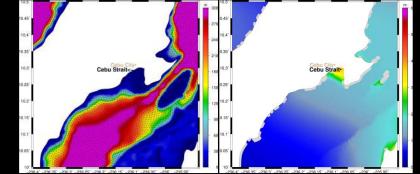
Maximum elevation in Iloilo Strait.



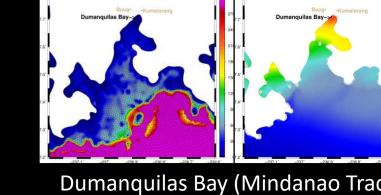


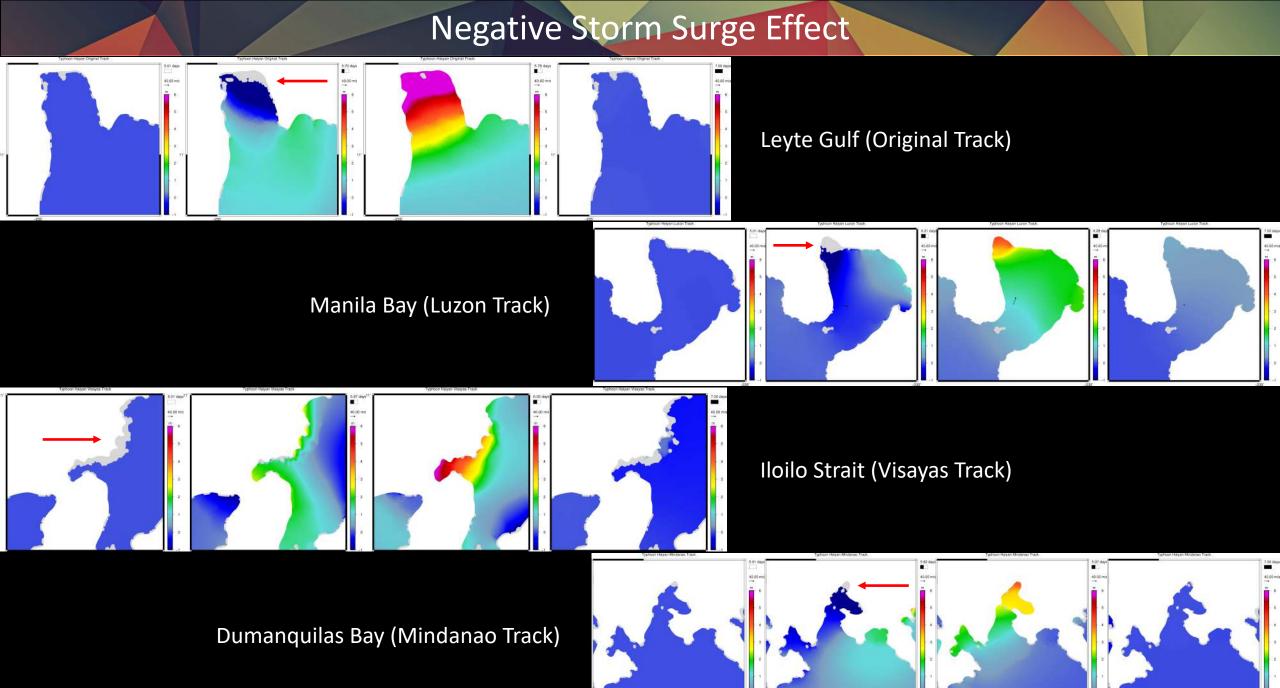
Leyte Gulf (Original Track)





Manila Bay (Luzon Track)


Dumanquilas Bay (Mindanao Track)



Davao Gulf-----

Davao Gulf (Mindanao Track)

Discussion:

>Input files are archived in DesignSafe's Data Depot

➤Can be used in forecasting

Mesh refinement to include flood plains to see inundation in coastal communities

Identify all storm surge prone areas

Research	/orkbench + Learning Center + NHERI Fa	cilities + NHERI C	ommunity +	About 1	telp +	Searc	n Designiða	de Q			
		ategotas Tag Herer	re Hore	R A Copy Previous	ter Provinse treagent	a Couricad	4 Story	B Move to Train			
0 Ad	Projects REU-2016 Halyan_D	nginalAndSynthetic, 9D	ays								
My Data	NUMBER OF THE ADDRESS OF A DATA SALES										
My Projects	Pi Dawson, Clinton 8	4.; Mariage Te	en Menbers	DOI	(Appears here	when publish	ed)				
Shand with Box.com	In Date of (Appears here wheel Publication										
Dropbox.co Google Driv	Project Type Simulation Description This is a project where the REU studie			Keywords	REU projects	tor summer 2	018				
Published	Working Directory Publication P	THE OWNER AND A DESCRIPTION OF	Vature Maria								
	Name		Size		Last mo	dified					
Curation	D fort.13		125.0 MB		7/26/18	2:50 PM					
	D fort.14		523.3 MB		7/26/18	2.50 PM					
	[] fort.15		13.5 KB		7/26/18	2:50 PM					
	C) fort.22		13.6 kB		7/26/18	2:50 PM					
	D fort 22 kitton		13.6 KB		7/26/18	2:50 PM					
	Tort.22.mindanao		13.6 KB		7/26/18	2:50 PM					
	Thrt.22.visayas		13.6 KB		7/26/18	250 PM					
	B read, me.txt		311.0 bytes		7/26/18	2:56 PM					

Reflection

Learned Fortran, Matlab, Python, Unix terminal, and ADCIRC.

➢ Processes of how an engineering research works.

Make in impact in my community.

Reflection

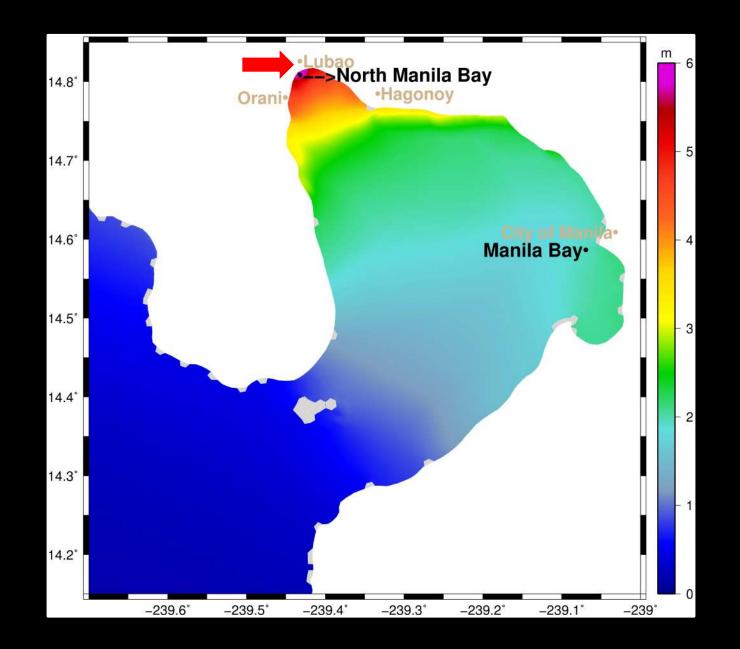
Future Opportunities: Computing4Change & SPICE (Supporting Pacific Indigenous Computing in Excellence)

Program November 11–16, 2018 Exhibits November 12–15, 2018

KAY BAILEY HUTCHISON CONVENTION CENTER DALLAS

The International Conference for High Performance Computing, Networking, Storage, and Analysis

Acknowledgement


References

I would like to thank the following for making this research experience possible:

- National Science Foundation (NSF) and the Natural Hazard Engineers Research Infrastructure (NHERI)
- Professor Clint Dawson and Dr. Jennifer Proft
- Texas Advanced Computing Center staffs: Charlie Dey and Je'amie Powell, and Hedda Prochaska
- Graduate students: Chen Chen and Mark Loveland
- Dr. Joannes J. Westerink of University of Notre Dame
- Dr. Karina Vielma and Ms. Rosalia Gomez
- Co-NHERI REU students

"Final Report re Effects of Typhoon 'Yolanda' (Haiyan)." (2013). National Disaster Risk Reduction and Management Council, Quezon City, Philippines.

- Lagmay, A. M. F., Agaton, R. P., Bahala, M. A. C., Briones, J. B. L. T., Cabacaba, K. M. C., Caro, C. V. C., Dasallas, L. L., Gonzalo, L. A. L., Ladiero, C. N., Lapidez, J. P., Mungcal, M. T. F., Puno, J. V. R., Ramos, M. M. A. C., Santiago, J., Suarez, J. K., and Tablazon, J. P. (2014). "Devastating storm surges of Typhoon Haiyan." International Journal of Disaster Risk Reduction, 11, 1–12.
- Landsea, C., and Delgado, S. (n.d.). "TCFAQ E10) What are the average, most, and least tropical cyclones." *Effect of El Nino on U.S. Landfalling Hurricanes*, (Jul. 30, 2018).
- Lapidez, J. P., Tablazon, J., Dasallas, L., Gonzalo, L. A., Cabacaba, K. M., Ramos, M. M. A., Suarez, J. K., Santiago, J., Lagmay, A. M. F., and Malano, V. (2015). "Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks." Natural Hazards and Earth System Sciences Discussions, 3(2), 919–939.
- Mori, N., Kato, M., Kim, S., Mase, H., Shibutani, Y., Takemi, T., Tsuboki, K., and Yasuda, T. (2014). "Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf." *Geophysical Research Letters*, 41(14), 5106–5113.
- Sebastian, A., Proft, J., Dietrich, J. C., Du, W., Bedient, P. B., and Dawson, C. N. (2014). "Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN ADCIRC model." *Coastal Engineering*, 88, 171–181.
- Westerink, J. J., Luettich, R. A., Feyen, J. C., Atkinson, J. H., Dawson, C., Roberts, H. J., Powell, M. D., Dunion, J. P., Kubatko, E. J., and Pourtaheri, H. (2008). "A Basinto Channel-Scale Unstructured Grid Hurricane Storm Surge Model Applied to Southern Louisiana." *Monthly Weather Review*, 136(3), 833–864.

